A Brief Introduction to Euclidean Geometry in Competition Math

Rohan Singh

April 2020

Problems

1. Find the area of the largest triangle that can be placed inside a square with sidelength 1.
2. Let $A B C D$ be a square with sidelength 1 . Square $E F G H$ is created by connecting the midpoints of the square formed by the midpoints of $A B C D$. Find the value of

$$
\frac{[E F G H]}{[A B C D]}
$$

given that $[X]$ denotes the area of figure X.
3. Let ω be a circle with radius $k \in \mathbb{R}$. Points A, B, C, D are on the circle in counterclockwise order such that $A B D=\angle 37^{\circ}$. The smaller angle formed by the diagonals is also 37°. Find $\angle B C D$ in degrees.
4. Find the area of a regular octagon with sidelength 1.
5. Triangle $A B C$ has an area of 12 . Point D lies on $B C$ such that

$$
B D=2 \cdot D C
$$

Find the area of triangle $A D B$.
6. A regular hexagon has a sidelength of k. Find all possible values of k given that the hexagon has an integer area given that $k \in \mathbb{R}^{+}$.
7. Quadrilateral $A B C D$ has perpendicular diagonals with integer lengths. Find the maximum possible area of $A B C D$ given that $A B=13$ and

$$
A B>B C>C D>D A
$$

8. Let $a_{1}, a_{2}, \ldots, a_{201}$ be 201 equidistant points on a circle. Given that the triangle with maximum area formed by a subset of the points is

$$
a_{1} a_{p} a_{q}
$$

with $p, q \in\{2,3, \ldots, 201\}$ find the sum of all possible values of $p+q$.
9. Find the area of the largest square than be inscribed within a regular octagon with sidelength 1.
10. Let p_{0} be a square with sidelength 1 . Let q_{0} be the circle inscribed within p_{0}. For all positive integers n, let p_{n} for $n \geq 1$ be the square formed by connecting the midpoints of p_{n-1}. Let q_{n} be the circle inscribed within p_{n}. Let $[X]$ denote the area of figure X. Find the value

$$
\sum_{i=1}^{\infty}\left|\left[p_{i}\right]-\left[q_{i}\right]\right|+\sum_{i=2}^{\infty}\left|\left[q_{i-1}\right]-\left[p_{i}\right]\right|
$$

